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ABSTRACT

In some computerized educational systems, there is evidence
of students wheel-spinning, where a student tries and re-
peatedly fails at an educational task for learning a skill.
This may be particularly concerning in low resource set-
tings. Prior research has focused on predicting and model-
ing wheel-spinning, but there has been little work on how
to best help students stuck in wheel-spinning. We use past
student system interaction data and a minimal amount of
expert input to automatically inform individualized inter-
ventions, without needing experts to label a large dataset of
interventions. Our method trains a model to predict wheel-
spinning and utilizes a popular tool in interpretable machine
learning, Shapley values, to provide individualized credit at-
tribution over the features of the model, including actionable
features like possible gaps in prerequisites. In simulation on
two different statistical student models, our approach can
identify a correct intervention with over 80% accuracy be-
fore the simulated student begins the activity they will wheel
spin on. In our real dataset we show initial qualitative re-
sults that our proposed interventions match what an expert
would prescribe.

Keywords
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1. INTRODUCTION

Educational technology is increasingly used in a wide array
of K-12 settings and some students struggle. Beck et al. [6]
coined the term “wheel-spinning” to denote students that
were repeatedly trying, and failing, to successfully complete
a specific skill after many attempts in an intelligent tutoring
system. They additionally found it was a significant issue in
two popular computerized educational systems. Such long
repeated failures are likely to be an inefficient use of time
for students, and may additionally contribute to lack of mo-
tivation for future learning.

Tong Mu, Andrea Jetten and Emma Brunskill "Towards
Suggesting Actionable Interventions for Wheel Spinning
Students" In: Proceedings of The 13th International Conference
on Educational Data Mining (EDM 2020), Anna N. Rafferty,
Jacob Whitehill, Violetta Cavalli-Sforza, and Cristobal Romero
(eds.) 2020, pp. 183 - 193

Andrea Jetten
War Child Holland
Andrea.Jetten@warchild.nl ebrun@cs.stanford.edu

Emma Brunskill
Stanford University

Although expert human instructors are often very good at
diagnosing and assisting students who are stuck, it is time
consuming for both the instructors and the students waiting
for the instructor’s intervention. Additionally many educa-
tional settings lack a sufficient number of expert teachers.
Our research is particularly motivated by a collaboration
with the non-profit War Child Holland whose program Can’t
Wait to Learn (CWTL) provides self-paced educational soft-
ware on tablets primarily to children in or coming from
conflict-affected regions. In such settings, a limited number
of teachers must often address the learning needs of a large
number of students with a wide variety of educational back-
grounds. To give a specific example, in the classes in Uganda
the program is implemented in, the average class size is 114
students per teacher. Additionally for some population of
students where education is especially hard to access, the
program is run by facilitators who do not have the same
expertise as instructors to provide learning support for indi-
viduals. Methods that can automatically identify individu-
alized interventions, such as having the student practice an
activity to review a prerequisite skill, to help wheel-spinning
students could be greatly beneficial for students and teach-
ers. However, since the term was coined, there has been
much work for modelling and predicting wheel-spinning [11,
12, 16], but little work in developing interventions.

There are many possible reasons a student may wheel-spin,
including lack of required prior knowledge, a long gap in
learning of the material, or an ineffective educational activ-
ity. Omne approach could be to have experts label a large
dataset with expert prescribed interventions and train a
model to predict those interventions. However in many cases
the time necessary to label such a dataset can be infeasibly
large. For example, in our real world dataset a domain ex-
pert needed 30 minutes to label the 6 wheel-spinning cases
we use for a qualitative evaluation. This would translate to
120 expert hours to label our whole dataset of more than
2000 wheel-spinning cases.

In this work we present a method to automatically predict
when an intervention could be helpful and which interven-
tion to give. Our method uses prior student system log
data and only requires a few hours of expert input. Our
method takes as input a set of features, a subset of which
are actionable and correspond to a concrete intervention (for
example, the feature “prerequisite performance” could cor-
respond to an intervention of reviewing that prerequisite).
We then use featurized past student data to train a model
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to predict wheel-spinning. With the prediction model, we
use methods from explainable machine for providing feature
credit attribution for the prediction of individual datapoints,
specifically Shapley values [19], to determine which action-
able feature contributed most to the prediction and suggest
an intervention.

We evaluate the ability of our method to suggest correct
interventions through simulation and through a qualitative
study with our real data. Evaluating if our method is im-
pactful will eventually require experimental studies. The
costs of an experiment are high in our situation where this
educational technology is being used by children in conflict-
affected areas and who may be in remote villages without
internet. Before embarking on such an effort, in this work
we first assess the potential benefits and performance of our
method. In simulation studies, we simulated students us-
ing two different student models, both based on the popular
Bayesian Knowledge Tracing (BKT) [10] student model. In
both of our simulations, our method can prescribe a correct
action (a helpful intervention or correctly identifying no in-
tervention is needed) with high accuracy before attempting
an activity. This accuracy can be improved if the predic-
tion is made at a later attempt. In an initial qualitative
assessment in our real world CWTL setting we show our
method’s explanations are consistent with what an expert
would prescribe in a majority of the cases. In the other
cases the method did not have access to key data used by
the expert, suggesting our method is able to identify correct
interventions over correctly defined inputs.

Our method is, to our knowledge, one of the first works
for both addressing automatically identifying interventions
for wheel-spinning students and using interpretable machine
learning in educational technologies. These results suggest
that our method can help inform interventions, whether for
carefully designed human-in-the-loop systems (such as only
informing the teacher if confident the teacher is the best
source) or for automated systems (jumping back to practice
an earlier skill), and may help further adaptive automated
systems for effective, efficient and engaging education.

2. RELATED WORKS

2.1 Wheel-Spinning

The term wheel-spinning was first coined by Beck et. al [6]
where they examine its prevalence in two educational sys-
tems. Gong et al.[11] further explored models to predict
wheel-spinning. Beck et al [5] found it applied to students in
non-western societies as well. They also examined the influ-
ence of affective factors, and found it correlated with gaming
the system. Matsuda et al. [16] examined using neural net-
works together with the BKT model [10] to predict wheel-
spinning using only past student performance information.
Kai et al. [12] investigate using decision trees to distinguish
between productive persistence and wheel-spinning. Zhang
et al. [24] make a comparison over many methods for detect-
ing wheel-spinning. Wan et. al [23] take a step in model-
ing with actionable results by examining the effects of using
prerequisite performance as features. They modeled wheel-
spinning using both the average prerequisite performance
and the weakest prerequisite and found that prerequisite
knowledge was a reliable predictor of wheel-spinning and
slightly improved model performance. In our work we pro-
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Feature Abbrev | Value

Activity ID D 31 Feature Abbrev | Value

Time since last played T 25 # Attempts Prerequisite 1 = P1 High

# Attempts Prerequisite 1 = P1 7 # Attempts Prerequisite 2 = P2 High

# Attempts Prerequisite 2 = P2 1 # Attempts Prerequisite 3 | P3 High
A hd

Wheel Spun? y Yes Wheel Spun? y Yes

(a) Example 1: Fake simplified (b) Example 2: Simple Binary
datapoint inspired by CWTL Example

Figure 1: Simulated Student Setting

pose a method to not only predict wheel-spinning, but also
give suggestion of a possible intervention. We achieve this
by designing our features to be actionable, such as incorpo-
rating performance on all prerequisites as separate features,
with methods from explainable machine learning.

2.2 Explainable Machine Learning

Explainable Machine Learning is a rapidly growing popular
field in the machine learning community. One subfield is the
study of feature attribution which are methods that return
how much each feature contributed to the total prediction
of a datapoint in a machine learning model. In our work
we use Shapely values [19], and the python implementation
SHAP [13, 14] package to inform interventions. Shapley val-
ues are a method originating in game theory for fairly allo-
cating a payout between participants. It has recently found
popularity in explainable machine learning to calculate fea-
ture attributions. Shapley values have been used widely
both within and outside of machine learning, including in
medical applications [15], social network node analysis [17],
and studying carbon emission quotas in China [25]. To our
knowledge this is one of the first works on using Shapley
values and explainable machine learning methods for educa-
tional technologies.

3. METHODS

In this section we present an algorithm to help students
likely to wheel spin by suggesting actionable interventions.
Our goal is to provide a method for using past student
log data to predict when and which intervention a student
will need to prevent wheel-spinning. We would also like
to minimize interruptions to student-activity pairs who do
not wheel spin. Similar to prior work [6] we define wheel-
spinning as when a student consecutively fails an educational
activity more than a threshold number of times. We will re-
fer to the student-activity pair of the i*" student working
on the 5 activity as pairi;. To achieve our goal, for every
pair;j, our algorithm uses a 2 level decision process shown
in Algorithm 1.

We first train a machine learning model using an existing
dataset of student log data to predict wheel-spinning. Our
overall algorithm (Algorithm 1) is compatible with any ma-
chine learning model that outputs probabilities of wheel-
spinning given an input set of student features. In our work
we use the popular gradient boosting method XGBoost [9].
When a student is using the educational program, given
their current state the algorithm uses the trained model
to predict if a student-activity pair will result in wheel-
spinning. We define the number of failed attempts a student
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makes before we decide to possibly suggest an intervention
as n. If the student has reached the n‘" attempt on the cur-
rent item our method uses the wheel-spinning model to pre-
dict if wheel-spinning will occur. If the output probability
of wheel-spinning of the model is greater than a threshold,
p, the algorithm will then propose a potential intervention.
n and p are hyperparameters, and we provide further dis-
cussion on their effect in Sections 4.5 and 6.

Interventions are proposed using a method of feature at-
tribution from explainable machine learning, Shapley Val-
ues[19] (described in more detail in Section 3.1). We use
Shapley values to assign a contribution value to each feature
used in the wheel-spinning prediction model. A subset of
these features are designed to be actionable and correspond
to an intervention. For example, Figure la shows example
feature values of a fake datapoint for a student-activity pair
inspired by CWTL. An example of an actionable feature in
this fake datapoint is number of attempts required on a pre-
requisite skill. If assigned a high positive attribution value,
it would suggest the student needs more practice on that pre-
requisite. Our method identifies the actionable feature with
the highest Shapley value and suggests the corresponding
intervention to give to the student. Non-actionable features
that do not correspond to an intervention but increase pre-
diction accuracy are also included.

There are a few places that require expert input, for ex-
ample choosing hyperparameters n and p and designing the
features and interventions. For experiments with our real
world dataset, we worked together with a domain expert to
create actionable features and corresponding interventions.

3.1 Background on Shapley Values

In this section we provide some background on the calcu-
lation and properties of Shapley Values [19] which is used
in our method to provide feature attribution for the wheel-
spinning prediction of individual datapoints. Shapley values
originated in game theory and in the context of explainable
machine learning, provide an attribution for how much each
feature contributes to the total prediction of a datapoint. To
give an example, consider a setting where we are predicting
wheel-spinning using features in our dataset. We will re-
fer to this setting as example setting 1. The datapoint in
Figure la gives an example datapoint in this setting. As-
sume the mean prediction of the wheel-spinning model over
all the datapoints in this example is 0.5, and for this data-
point the model predicts a probability of 0.8, which is +0.3
from the mean. The Shapley values for each feature give
the contribution of each feature to this difference from the
mean where the sum of contributions over all features must
be 40.3. For example the features ID, T, P2 could all
be attributed -0.1 and the feature P1 could be attributed
+0.6. This attribution would suggest the value of the num-
ber of attempts on prerequisite 1 is likely to be responsible
for the increased probability of wheel-spinning over the av-
erage wheel-spinning prediction.

Shapley values is the only method for attribution that satis-
fies the following desirable properties which together are the
definition of a fair attribution[19]: symmetry (two features
that contribute equally will have the same value), dummy
(a feature that does not change the prediction has a value of

0), and additivity (if the prediction model is the sum of mul-
tiple models, the value of a feature in the prediction model
is the sum of all values over the individual models). To give
intuition of why the symmetry and dummy properties are
desirable in this context, consider a second, simpler exam-
ple setting, example setting 2, where we are also predicting
wheel-spinning but all inputs and outbuts are binary. In this
setting the wheel-spinning prediction is for one activity that
is thought to have three prerequisites (P1, P2, P3). Fig-
ure 1b gives an example datapoint in this setting. Consider
the case where two prerequisites, P1 and P2, are equally
important and P3 was incorrectly labeled as a prerequisite
and its value never influences the prediction of the model.
Because P1 and P2 are equally important and for the dat-
apoint in figure 1b both their values are high, we would like
them to have equal attribution, or to satisfy the “symmetry”
property. Additionally, because P3 was incorrectly labelled
as a prerequisite we would want it to be given 0 attribution
regardless of its value, or to satisfy the “dummy” property.

We now describe formally how to calculate Shapley values.
Let F denote the set of features and X denote the dataset.
One example of a datapoint in X from example setting 1 is
the example datapoint Figure 1la, which we will refer to as
Z;. In this example F = {ID, T, P1, P2}. Also assume
there is a function V where V(z;) is the predicted value
on datapoint x;. Let SHAP(x;, f;) be x;’s Shapley value
for feature f;. In our example, V(z;) would output the
probability of x; wheel-spinning. For a subset of features
s, (s € F) we define a fake datapoint, z; s, as a datapoint
that only includes the the values of z; for the features in s.
In our example, one potential s could be {T, P1}, and the
corresponding x;, s = [T : 25, P1 : 7]. For a feature f;, we
define a coalition of features, I, as a subset of F that does
not include f;. We define C as the set of all unique coalitions
for f; and let F}, denote the k" coalition in this set. Let the
contribution of f; in coalition F} to the prediction of x; be
the difference in prediction of the datapoint without f; and
the datapoint with f; included, or V(zi r,ur;) — V(2i,7,)-
In our example, the s = {T, P1} is a coalition of features
for f; = ID as it does not include f;. If the probability
of wheel-spinning on z; s (V([T: 25, P1l: 7])) is -0.1 and
V(xi p,up;) = V([ID: 31,T : 25, P1: 7]) = -0.2. Then the
difference V(z:,r,uy;) — V(i r,) = -0.1

The Shapley value is then the expected contribution of f;
averaged over all coalitions:

SHAP(xi, f;) = Ec[V(zi,rus;) — V(wi,r)] (1)

-3 |F5|'(1F] = 1 — [ Fi])!
| !

(V(zi,poup;) = V(zir,))

(2)

FreC

Going back to example setting 2 (Figure 1b), we see once
either P1 or P2 enters a coalition that does not contain
either of them (so {@} or {P3}) the prediction increases
from zero to one and will not increase further when the other
enters. Because we average across all coalitions and in half
of the coalitions, P1 will occur before P2 and in the other
half P2 will occur before P1, the symmetry property will be
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satisfied and P1 and P2 will be given equal attribution. We
can also see that if P3 does not change the prediction value
in any coalition, it will be given zero attribution, satisfying
the dummy property.

In the machine learning case, we would like to use a machine
learning model M as the function that assigns a predicted
value to z;. Because a machine learning model requires a
datapoint to have values for all features, we must approxi-
mate V (z;,F, ) using other datapoints. Let z; be a randomly
sampled real datapoint from the dataset that is not x;. We
define a fake datapoint x; r,; as a hybrid datapoint that
contains the feature values of z; for the features in Fi and
the feature values of x; for the features not in Fj. In our
running example, z; g = [ID: x11p, T: 7, P1:6, P2:2; p2].
M (z;, 7, 1) is then used to approximate V(z; r, ).

Shapley values require summing over all possible coalitions
and are very computationally expensive. There are algo-
rithms that compute an approximate solution through sam-
pling such as the method proposed by Vstrumbel et al [20].
In our case, we use an implementation, TreeSHAP [13, 14],
designed to efficiently and quickly calculate exactly Shapley
Values for decision tree based models.

Algorithm 1: Suggest Intervention for Pair;;

: Dataset of Preexisting Log Files (D), Set of
Actionable Features (F,), Set of other
features (F,), Mapping of Actionable
Features to Interventions (GetIntervention),
student; log file(L;) at nth attempt on
problem;, wheel-spinning Model Output
Probability Threshold (p)

Output: Suggested Intervention for Pair;;

// We abbreviate wheel-spinning as WS

WSModel = TrainModel (D, {Fa, Fo}, n)

X; = GetCurrentFeatures(L;, {Fa, Fo})

q = WSModel.predict(X;)

if ¢ > p then

{SHAP,,SHAP,} = ComputeShapley(X,,
WSModel, {Fa, Fo}) // Section 3.1
MaxFeature = argmax ¢, SHAP,

Intervention = GetIntervention(MaxFeature)

else
\ Intervention = Don't Intervene

end

Input

3.2 Baselines

We compare to two baselines and, in this section, include dis-
cussion for building intuition for which situations our prosed
method could outperform the baselines.

Baseline 1 - Overall Feature Importance (FI): Because we
are using a decision tree based method to predict wheel-
spinning, overall feature importances are calculated auto-
matically. Therefore, we can consider a method that when a
student-item pair is predicted to wheel spin, choose the in-
tervention suggested by the feature with the highest overall
feature importance. This method requires less compute as
it does not require an additional step of calculating individ-
ualized feature attributions. Conceptually, this method will
perform equivalently as our proposed method when there is

a single cause for wheel-spinning. However in cases where
there can be many potential causes (for example, some student-
item wheel-spinning is due to forgetting effects from long du-
rations between learning while others are due to unmastered
prerequisites), then this baseline, which will only select the
single, most predictive cause for all students, will perform
poorly. In this respect, this baseline has parallels to a base-
line which predicts the majority class. Note that we do not
compare to a baseline that predicts the majority class be-
cause we are considering a setting where we do not have any
labels for wheel-spinning causes. Consequently our method
has no way of discerning what the majority cause is. The
goal of our work instead is investigating the effectiveness of
feature attribution methods to identify causes.

Baseline 2 - Logistic Regression (LR): Linear models such
as logistic regression are a computationally efficient subset
of our method as they, by nature and without needing addi-
tional calculation, have feature credit attribution for the pre-
dictions of individual datapoints. They can potentially work
well in cases where a linear relationship can accurately model
the relation between features and wheel-spinning. However
in many domains, such as CWTL, non-linear models for the
wheel-spinning prediction can achieve better performance
(shown in Section 5.4). Therefore in this work we focus on a
method that can work with non-linear models and we treat
linear models as a baseline.

4. SIMULATIONS

We assess the performance of our method in simulation where
we can create true causes of wheel-spinning, which we define
as needing 10 or more attempts on one educational activity
to match both prior work [11, 12] and evidence from the
CWTL data.

We simulate students using two different student models
both based on the Bayesian Knowledge Tracing (BKT) model
[10]. The BKT model is a two state Hidden Markov Model
(HMM) and is a popular model of student learning that
has been shown to be successful for various applications in
the educational technology literature (for example Corbett
et al. [10]). The model has two hidden states, mastered or
not mastered, and two observed states, correct or incorrect.
From the mastered state of a skill, the student will answer
an educational activity involving that skill correctly unless
they slip and answer incorrectly with a probability of slip
(P(s)). From the unmastered state of that skill, a student
will answer a problem involving the skill incorrectly, unless
they guess correctly with a probability of guess (P(G)). Ev-
erytime the student is presented a practice opportunity for
an unmastered skill, they have a probability of transitioning
(P(T)) to the mastered state for the skill. We make modi-
fications to the BK'T model to match aspects of the CWTL
domain that may also occur in other domains. In our sim-
ulations we specifically consider a situation where a student
may have been moved on too fast because they passed a
prerequisite by guessing. This is because the corresponding
intervention of reviewing the relevant prerequisite could be
automated and is a key feature we are trying to achieve in
the CWTL setting.

4.1 Simulated Curriculum
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In Figure 2a we illustrate our simulated sequence of edu-
cational activities as well as the prerequisite structure be-
tween them. In this setting we consider each activity as
corresponding to a unique skill. Skills build on each other
in the way shown in the prerequisite graph. To mimic the
CWTL curriculum, simulated students are presented educa-
tional activities in order starting at Al. They are repeat-
edly presented an educational activity (for example A1) until
they succeed and are moved onto the next activity (in our
example, A2).

We note that while our analysis and results are in a setting
where the curriculum is linear, our method does not rely on
this setting and can be applied more generally to different
types of ordering constraints over educational activities.

4.2 Student Model 1

In our first student model, we make two modifications to the
BKT model to reflect behaviors that occur in our domain
and in other domains. In CWTL, each activity involves
answering a certain percentage of multiple choice questions
relating to the target skill of the activity correctly. In this
setting, the probability of guess starts low, however ques-
tions are reused between activity instances so the probabil-
ity of guess increases with attempts as students may start
to memorize answers. This effect can also occur in other
domains where questions are reused. To mimic this effect in
simulation, we start the probability of guess at a low base
value P(G) and with every attempted answer by the stu-
dent, we increase it in such a way that at the n'* attempt of
the student on the problem the probability of guess, P,(G),
is P,(G) = 1— (1 - P(G))". We use this function as it
monotonically increases to its limit of 1.

Our second modification is, for skills involving prerequisites
(A4 and A5), we enforce the prerequisite structure by defin-
ing a new transition probability for when the prerequisites
are not mastered, Punmastered(T). In all our simulations this
was set to zero however this probability can also be set to
a small non-zero probability with similar results. This is to
reflect the difficulty of learning complex combinatorial skills
without mastering the prerequisites.

4.2.1 Data Generation

In our simulations, we show our method is able to correctly
distinguish when and which prerequisite should be reviewed.
We consider the whole population comprised equally of two
different populations of students. Students of student pop-
ulation 1 finds all skills “easy” to master and has high tran-
sition probabilities for all skills. Students of student popu-
lation 2 finds one of the prerequisite skills (A1, A2, or A3)
“hard” to master and has low transition probabilities for that
skill. For this student model, we are able to control which
prerequisite students of student population 2 may not mas-
ter by setting that prerequisite as “hard”. Additionally we
can examine the performance of our method at suggesting
interventions in a heterogeneous population.

We report results from one set of parameters with the transi-
tion dynamics described in Table 1. Notice P(G) is lower for
A4 and A5 to reflect the complexity of those two questions
over Al, A2, and A3. We generate both our training and
test sets by simulating 1000 student trajectories, 500 from

Table 1: Parameters for Student Model 1

P(T) P(T) P(G) P(G) P(S) “hard”
“easy” | “hard” | (ALAZAS) (ALAS) skill
0.5 0.01 0.01 0.005 0 A2

Table 2: Parameters for Student Model 2

P(T) | P(D) | PG) PG [P
(A1,A2,A3) | (A4,A5)
05 0.1 0.01 0.006 |0

each population. For these simulation parameters, initially
P.asy(T) is higher than P,(G) and if a student needs a low
number of attempts on a prerequisite, they are most likely
part of student population 1 and have mastered the prereg-
uisite. If a student needs a higher number of attempts on
a prerequisite, then they are most likely in student popula-
tion 2 and they may either have mastered the prerequisite
or passed through guessing and need to repractice the pre-
requisite. Decreasing the value of Peasy(T) or P(G) can in-
crease the strength of this correlation between attempts and
mastery and allow model accuracy to increase. Similarly, in-
creasing these parameters, or increasing Punmastered(I') can
decrease accuracy.

4.3 Student Model 2

We designed our second simulated model to account for stu-
dent engagement and simulate disengagement and wheel-
spinning behavior. We did so based on expert insights, and
findings from prior literature on boredom and disengage-
ment in tutoring systems. A figure illustrating this modified
model is shown in Figure 2b.

In this model we make an additional modification on Stu-
dent Model 1 by splitting the “Not Mastered” state into
two states: “Engaged” and “Disengaged”. Each student for
each activity starts in the Engaged state. In the Engaged
state the student is open to learning and can transition to
the “Mastered” state with probability P(T). However with
each failed activity attempt, on the n'* attempt they can
also transition to the “Disengaged” state with probability
P, (D). This probability of disengagement starts at 0 and
is parametrized by a base value of P(D). It increases mono-
tonically in the same way the probability of guess does, to
eventually reach 1: P,(D) = 1 — (1 — P(D))"*. Once in
the disengaged state for a skill, the student can transition
out of it with probability P(E). In our simiulations we set
P(E) to 0 however it can also be set to a small non-zero
probability with similar results.

We make these modifications to reflect points from (1) prior
literature and from domain expert insights that suggests
repetitive tasks can lead to boredom [22, 8], (2) literature
suggesting boredom can lead to disengagement which results
in gaming behavior (such as random guessing) [3, 2, 4, 1, 11]
as opposed to productive learning (3) literature suggesting
disengagement and boredom are affective states that persist
and are hard to transition out of [4, 1, 18].

4.3.1 Data Generation
We generate both our training and test set by simulating
and generating 1000 student trajectories. Parameters used
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. 1
Curriculum . 1 Not Mastered
Ordering: Hidden
States: :
_________________________ |
Prerequisitet ..\ () (0 000 TTTTmTmTmETmEET
Structure:
Observed
States: Cncorrect > _Correct >

(a) Simulated Curriculum

(b) Diagram of the modified BKT of Student Model 2

Figure 2: Simulated Student Setting

to generate the results are given in Table 2. For these param-
eters because P(T') is initially much higher than P, (G) and
P,(D), if a student needs a low number of attempts, they
most likely mastered the activity. If they need a large num-
ber of attempts, they most likely became disengaged and
guessed correctly. In these simulations, the correlation be-
tween attempts and mastery can be increased by increasing
P(T) or decreasing either P(G) or P(D). Similarly chang-
ing the parameters in the opposite direction or increasing
Pynmastered(T) or P(E) can decrease accuracy.

4.4 Features

We train our model to predict wheel-spinning on the later
skills, A4 and A5, and automatically suggest interventions
in the form of if and which prerequisite to review. In both
of the student models, needing a higher number of attempts
on an activity is positively correlated with a skill not being
learned. With this in mind we use the following three fea-
tures and corresponding interventions: (1) Activity identity
(A4 or Ab): If assigned a high contribution, the correspond-
ing intervention could be redesiging the level. (2): Number
of attempts on the most recent prerequisite as defined by the
prerequisite graph. The corresponding intervention would
be to have the student review that activity. (3): Number of
attempts on the second most recent prerequisite.

4.5 Results

4.5.1 Evaluation Metrics

To evaluate the accuracy of our method, we consider the
frequency with which the method predicts a correct action,
which includes correctly deciding to not intervene and cor-
rectly suggesting a correct intervention. We refer to student-
problem pairs that would lead to wheel-spinning if no in-
tervention is given as a wheel-spinning pair and student-
problem pairs that would not wheel spin if no intervention
is given as non-wheel-spinning pairs. Across all student-
problem pairs, we define four counts:

1. Correct-Pairs_No-Intervention (CP_NI): the number of
student-problems where the model correctly suggests
no intervention)

2. Correct-Pairs _Intervention (CP_I): model correctly sug-
gests the right intervention

Student | n | Method | Accuracy | Precision | Recall | F1 | AUC
Model
0 XGB 88% 0.68 0.72 | 0.70 | 0.89
1 LR 86% 0.71 0.50 0.59 | 0.89
5| XGB 94% 0.79 0.93 [ 0.85 ] 0.97
0 XGB 83% 0.75 0.58 | 0.65 | 0.79
2 LR 80% 0.75 0.44 0.55 | 0.79
5| XGB 93% 0.81 0.99 [ 0.90 [ 0.96

Table 3: Simulation wheel-spinning prediction results av-
eraged over 200 simulations. XGB refers to XGBoost, LR
refers to the Logistic Regression baseline. At n= 5 attempts
the performance of XGB and LR are very similar so only
the XGB results are included. At n = 0 attempts, XGB has
higher Acuracy and F1 than LR.

3. Missed-Pairs (MP): model either suggests an incorrect
intervention or incorrectly does not suggest an inter-
vention)

4. Interrupted-Pairs (IP): model incorrectly suggests giv-
ing an intervention when it is unneeded, or suggests
the wrong intervention

Note that IP and MP both include students that were wheel-
spinning but the model suggests the wrong intervention since
such students are both not helped (“missed”) and would be
asked to do something not useful (“interrupted”). Addition-
ally, we classify wheel-spinning students who mastered both
prerequisites and were still jumped back to a prerequisite
as CP_I as insights from our domain expert suggests that
jumping back when a student is wheel-spinning and possi-
bly disengaged can be a helpful intervention.

Let S be the total number of student-problem pairs and
define accuracy as the total percentage of student problem
pairs that were given a correct intervention (= SE=NLECPL Y,
miss rate as the percentage of wheel-spinning instances that
were not identified or which were proposed the incorrect
intervention (= Cp%st), and the interrupted rate as the
percentage of Interrupted Pairs out of all studglt—problem

pairs that did not need an intervention (= zp—~775)-

4.5.2 Results

For all results, we averaged over N=200 simulations by re-
peating 200 times the data generation procedure outlined in
Sections 4.2.1 and 4.3.1. With this size of N, the standard
deviation for all results reported in this section is less than
0.005 (for results reported in percentages, less than 0.5%).
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Student| n | Method | Accuracy | Miss Interrupted
Model Rate Rate
0 Ours 88% 28% 8%
1 LR 86% 50% 5%
5 Ours 92% 14% 8%
LR 92% 14% 8%
Ours 83% 42% 8%
0 LR 80% 56% 5%
9 FI 75% 68% 16%
Ours 92% 1% 10%
5 LR 86% 25% 17%
FI 84% 34% 19%

Table 4: Simulation intervention suggestion results, aver-
aged over 200 simulations. Ours refer to our proposed
method, LR refers to the Logistic Regression baseline, FI
refers to the overall XGBoost feature importance baseline.
Notice the FI baseline was not included for Student Model
1 because in that simulation, there was only one cause of
wheel-spinning (Prerequisite 2) so FI is exactly equivalent
to our method.

We report the results of the XGBoost and Logistic Regres-
sion (baseline) models for predicting wheel-spinning in Ta-
ble 3. For lower values of n, XGBoost can achieve higher
accuracy and F1 when predicting wheel-spinning. As n in-
creases, the dataset becomes heavily skewed towards data-
points with wheel-spinning as well as students needing less
than n attempts correctly automatically labelled as no-wheel-
spinning, resulting in both methods achieving high accuracy.

We report the results of our method for identifying inter-
ventions for both student models in Table 4 when making
the prediction at 0 attempts and 5 attempts (n = 0 and n =
5). The probability threshold of the wheel-spinning model
over which we suggest an intervention (p) was set to 0.5 for
both. Our approach achieves high accuracy for both stu-
dent models even when making early predictions before the
student begins an activity (Oth attempt). Additionally our
method is mostly able to do better than the Logistic Re-
gression baseline (LR). For Student Model 1, because there
is only one cause of wheel-spinning the prescriptions of the
XGBoost Overall Feature Importance Baseline (FI) was ex-
actly the same as our method. However in Student Model
2 where there is more than one cause of wheel-spinning, our
method performs much better.

Due to the fact that students are modelled stochastically,
we are not able to achieve 100% accuracy as the correlation
between number of attempts on a problem and problem mas-
tery is not perfect. However we can increase the accuracy
by making the prediction at a later number of attempts as
shown in Table 4 when the intervention prediction made at
the fifth attempt (n = 5). Our accuracy for both student
models increases and the miss rate for both decreases. As we
increase the attempt number at which we consider providing
an intervention, all the student problem pairs that resulted
in less than 5 attempts were correctly not intervened upon
and automatically categorized as CP_NI. We provide further
discussion of this hyparameter and the p hyperparameter in
the Discussion (Section 6).

5. CAN’T WAIT TO LEARN

Our method was motivated by our collaboration with the
Can’t Wait to Learn (CWTL) program of War Child Hol-
land. CWTL is a tablet based, curriculum aligned, self-
paced, autonomous learning program that aims to teach
basic numeracy and literacy skills to children in conflict-
affected settings who are facing challenges in accessing qual-
ity education. The program is delivered on a tablet and tar-
gets learning objectives from grade 1-3. Based on the con-
text, the program can be used as a standalone or a supple-
mental educational program. CWTL is currently rolled out
in Sudan, Lebanon, Jordan, Chad, Bangladesh and Uganda.
Prior studies found the program was able to result in in-
creased psychological well-being as well as positive learning
outcomes in multiple countries [7, 21].

5.1 Game Mechanics

For our application we focus on the English reading program
in Uganda where we notice a high amount of wheel-spinning.
In classrooms utilizing the program, the instructor to stu-
dent ratio is large, with class sizes of 114 students per teacher
on average. The game takes place in the game world shown
in the left panel of Figure 3a. In the game, the student is
a member of a Ugandan village and the overarching narra-
tive of the game is to help each village member achieve their
goals by playing educational mini-games. The educational
mini-games (Figure 3a right panels give two examples) and
the instructional videos explaining concepts, such as letters
or more complex vowel sounds, form the main educational
mechanism. Each educational activity in the program is
a specific instance of a mini-game and the curriculum is a
fixed linear curriculum of a sequence of these educational
activities. For example, in the mini-game at the top right
of Figure 3a, the goal concept is learning to combine sounds
of words beginning with “0”. In the specific practice ques-
tion shown of this mini-game, students first tap the blue
buttons to listen to the sounds the “0” and “ff” components
of the word make separately. To answer the question cor-
rectly, they must then tap the correct picture describing the
complete word (“off”). To succeed on the activity students
must answer 8 out of 10 instances of this question correctly
as described by the green the orange circles displayed at the
top. Students practice each activity repeatedly until they
achieve this success criteria. When a student succeeds at an
educational activity they are progressed to the next activity
in the curriculum.

5.2 Wheel-Spinning Details

In analyzing the data, we find that 2.4% of student-problem
pairs exhibit wheel-spinning. This is lower than in other sys-
tems because there exist easier activities for entertainment,
engagement, morale, and for gaining initial familiarity with
a new concept without too much cognitive overload. Wheel-
spinning is still a problem as we find that 51% of students
wheel spin at least once. The bottom plot of Figure 3b shows
time played compared with the last activity reached. The
students who are below the curve whom we would like to
help are circled in orange.

To determine the threshold of attempts to define wheel-
spinning, we examine plots of student attempts on the game
they are currently playing at the end of the most recent log
file. If students are stuck on an activity, they are spend-
ing more time on it and have a higher probability of being
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on that activity when the playing session ends. Therefore
the activity the student is currently playing at the time the
log file was accessed is correlated with activities students
are wheel-spinning on. We compared the distribution of
attempts of the problem students are currently on to the
distribution of attempts on the activities they played 1 or 5
activities ago, which are less correlated with wheel-spinning.
We find a non-negligible percentage of students need 10
or more attempts on the current activity they are playing
(27%) while few students require 10 or more attempts on ac-
tivities played 1 activities (6.8%) or 5 activities (5.9%) ago.
We therefore defined wheel-spinning as failing 10 or more
attempts on an activity.

5.3 Model

In our model we used the following actionable features and
describe the corresponding intervention. We highlight the
actionable features that allow for in game interventions in
bold. These are especially helpful in our domain where
student to teacher ratios may be large. We also provide an
example of a non-actionable feature!:

(1) Last Played: If there has been a long duration since
the student last played, the intervention is to diagnose and
have them review what they forgotten. (2) Number of
attempts on the Prerequisite 1, 2 and 3 Prerequi-
sites ago: A small portion of the prerequisite structure is
shown in the top image of Figure 3b. These features use
the prerequisite graph to find the last, second to last, and
third to last prerequisite in the curriculum. These features
in the CWTL domain can be evidence that a student did not
master the corresponding prerequisite. The intervention is
to have the student practice the prerequisite. (3) Mini-game
Type: Allows the model to identify if a mini-game should be
redesigned. (4) Number of attempts on the first video: To
pass any video, a student only needs to watch it completely.

We also included other non-actionable features to reduce
confounding and improve prediction accuracy which we omit
in sake of clarity and brevity. Some examples of other non-
actionable features included were the number of times mini-
game was seen before, the Learning Level, which gives a
rough location of where the student is in the curriculum,
as well as other features helpful for distinguishing current
student location in curriculum.

The number of attempts on the first video can be an indica-
tor of low technological fluency. The intervention is to have a
notification that encourages them to ask a teacher or a peer
for help. (5) First Time Mini-game Type Seen?: Students
generally will need more attempts the first time they expe-
rience a mini-game. So this feature, while not actionable,
allows the model to make more accurate predictions.

5.4 Results

We first examine the accuracy of our model at predicting
wheel-spinning. We used data from 1170 students. Stu-
dents were assigned randomly to the training and test set
with 80%, or 943, students assigned to the training set. The
students completed 60 activities on average. There were a
total of 55,035 student-activity pair datapoints in the train-
ing set with 1,294 of them as wheel-spinning (2.4%). There
were a total of 15,004 datapoints in the test set with 322 of
them as wheel-spinning (2.2%). These datapoints were all
used in the n = 0 condition. Considering only the student-
activity pairs that required 5 or more attempts (n = 5),
the training set had 2568 datapoints (50% wheel-spinning -
there were still 1,294 wheel-spinning datapoints since only
datapoints with less than 5 attempts were removed) and the
test set had 664 datapoint (48% wheel-spinning). At n = 9,
the training set had 1454 datapoints (89% wheel-spinning)
and the test set had 365 datapoint (88% wheel-spinning).

As shown in Table 5, while our accuracy is quite high, due
to the class imbalance, precision, recall, and F1 are low.
We tried a variety of different models such as CART de-
cision trees and Random Forests and we found the model
we used, XGBoost, to do the best by a slight margin over
Random Forests and significantly over CART. We addition-
ally report results for Logistic regression to show that for
lower values of n, it is not able to achieve the same accu-
racy as XGBoost. As with the simulations, as the value of
n increases, the accuracy difference of the two models on
predicting wheel-spinning decreases as both models achieve
high accuracy at higher values of n. This is due both to a
higher balance of wheel-spinning datapoints in the dataset
and automatically correctly predicting not-wheel-spinning
on students who needed less than n attempts. However this
increased accuracy at higher values of n is at the expense of
allowing some of the students who will eventually wheel-spin
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Table 5: Wheel-Spinning Prediction: XGB refers to XG-
Boost, LR refers to the logisitc regression baseline. LR has
worse predictive accuracy and a lower F1 score than XGB
when the prediction is made at lower values of n.

on a problem still spend multiple attempts on the problem.
To deploy a system we would work with a domain expert to
decide the n that would be best.

To verify the method, we compare our method’s predictions
to those an expert would prescribe. To obtain the expert
prescription, we blinded the domain expert author of this
paper, by showing them the cases and asking for their pre-
scriptions before sharing with them the details or results of
the model. To generate the test cases, we randomly sampled
true wheel-spinning student-problem pairs of that were also
predicted as wheel-spinning by the model. To get diverse
cases, sampling was done by throwing out newly sampled
cases that were very similar to two or more previously se-
lected cases, until we had 6 cases total. For purposes of
making a comparison, we made a list of possible causes and
interventions for the domain expert to choose from, includ-
ing a none-of-the above choice. In our model, some features
allow for immediate actions (reviewing a prerequisite prob-
lem) while others do not (redesigning an educational activ-
ity). The immediately actionable features are much easier
to intervene on and based on our expertise gained, are much
more favorable to an expert or instructor. To reflect this, we
made the decision (before discussing the methods and giving
the examples to the expert) to choose the maximum imme-
diately intervenable feature if its Shapley value is greater
than half of the maximum feature Shapley value.

The cases are shown in Table 6. The expert’s prescription
and the suggestions of various algorithms are shown in Ta-
ble 7. Overall we found that our method can be promis-
ing for automatically suggesting correct interventions. Our
method’s suggested interventions agreed with the domain
expert’s prescribed interventions 4 out of 6 times, but not
in Cases 1 and 6. Additionally our method performed bet-
ter than logistic regression and the highest overall XGBoost
feature importance baselines.

In Casel, the expert believed the exact identity of the edu-
cational activity, a feature we did not include was the true
cause of the wheel-spinning and the intervention would be
to redesign that particular activity. While we did include
the mini-game type of each activity, we did not include the
unique identity of each activity in the model as it would re-
sult in too many features compared to the amount of data
we had. Therefore one tradeoff of our method that needs to
be made when there is limited data is using as many fea-
tures as we can to catch all possible causes and using only
the most important subset of the features to maintain model
robustness. In Case 6, even though the prerequisite struc-

n | Method Accuracy Precision | Recall F1 AUC Features Casel | Case2 | Case3 | Case 4 | Case 5 | Case 6
Mini-game (MG) 31 31. 611. 31 31. 546
XGB 93% 0.21 0.60 | 0.31 ] 0.91 Last Played (s) (LP) | 34 | 10. 6 10 12 %
LR 88% 0.12 0.60 | 0.19 | 0.86 First Time Seen? (F?) | F F F F F T
5 XGB 98% 0.60 0.60 | 0.60 | 0.99 Attempts Prereql EPI; 1 L 1 7 12 Z]
Attempts Prereq2 (P2 1. 1. 1. 1 1. o
LR 98% 0.53 0.58 0.55 | 0.99 Attempts Prereq3 (P3) 1 4 1. 3 4. 2]
9 XGB 99.7% 0.90 1 0.94 | 0.999
LR 99.7% 0.88 1 0.94 | 0.99 Table 6: The 6 cases from the CWTL dataset used for qual-

itative evaluation of the methods.

Expert | Ours | LR | FI
Casel 7]
Case2 P3 P3 P3 P3
Case3 MG MG | MG
Case4 P1 P1
Caseb P1 P1
Caseb P1
Accuracy - 4/6 | 2/6 | 1/6

Table 7: A comparison of our method and various baselines
with the Expert’s prescription. Ours refers to the method
described in this work, LR refers to the logistic regression
baseline, and FI refers to the XGBoost overall feature im-
portance baseline. MG refers to the “Mini-game” feature, F'?
refers to “First Time Seen?” featuree, P1, P2, and P3, refer
to “Attempts Prerequisitel”, “Prerequisite2” and “Prerequi-
site3” respectively and @ refers to an expert prescription not
in the list of what the model can suggest.

ture was created together with the domain expert, during
the activity of prescribing interventions, the expert realized
there may have been an incorrect dependency in the graph.
Where under the original graph there were no prerequisites
for this activity, under the new prerequisite graph this ac-
tivity would have prerequisites. This case highlights the
importance of having the correct curriculum graph.

In both the incorrect cases it would not have been feasible for
our method to have obtained the correct answer, suggesting
the ability of our method to identify correct interventions
given correct inputs.

6. DISCUSSION
6.1 Possible Improvements With More Data

The program is currently running and data is being col-
lected. As the amount of data increases and even more
expressive function classes, such as neural networks, can be
robustly trained, it is possible for the model to become more
accurate. Additionally currently we have limited data, espe-
cially of the wheel-spinning class, therefore we do not include
all possible helpful features, such as exact activity identity,
to ensure model robustness. This omission can cause errors
such as in Case 1. As more data becomes available this
tradeoff between including features and model robustness
becomes less important. More features can be included for
more accurate intervention predictions.

Table 8: Parameters for Student Model 1

P(T) [P(T) [P(G) [P(G) [P(S) “hard”
“easy” | “hard” | (ADARA3) (ALAD Skill
0.5 0.01 0.01 0.005 | 0 A2
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6.2 Setting Hyperparameters

As shown in both the results sections, our prediction at the
Oth attempt of a student activity pair (before the student
starts an activity) can be inaccurate. As we increase the
number of attempts, n, before we intervene, we are able to
increase accuracy as we by default do not intervene on stu-
dents who need less than n attempts. However this increased
accuracy comes at the expense of letting the students who
will wheel spin spend time unproductively attempting the
activity. This tradeoff may also not be feasible in environ-
ments where students may dropout before n attempts such
as educational games played in a casual setting. We illus-
trate the miss rate decreasing and the accuracy increasing as
we increase the number of attempts on which we make the
prediction for Student Model 2 (Section 4.3) in Figure 4b.
We fix the threshold probability of the wheel-spinning model
output to make prediction (p) at 0.5.

Another key design choice touched upon is setting p, the
threshold of the wheel-spinning model output for classifying
wheel-spinning. To give a concrete example, changing the
threshold from the default 0.5 to 0.7 would mean we need
the wheel-spinning model to output a probability of 0.7 on a
student-activity pair before we decide to suggest an interven-
tion. Therefore at every attempt, we can trade off between
correctly suggesting an intervention for a student-question
pair and “interrupting” students by changing the certainty
threshold. We examine this tradeoff using simulations fol-
lowing Student Model 2 (Section 4.3) at n = 0 and plot this
in Figure 4b. As expected, as we increase the threshold, the
missed rate increases as the interrupted rate decreases.

6.3 Limitation: Does Not Establish Causality

One limitation of this method is causal inferences cannot be
made. To illustrate this we consider simulations following
the simulation procedure of Student Model 1 (Section 4.2)
under a new set of parameters given in Table 8. In this case
we make A2 difficult instead of Al. As shown in Figure 2a,
A2 only affects A4. Students who struggle due to unmas-
tered prerequisite skills only struggle on A4. There will be
very few students who, due to randomness, will struggle on
A5. Therefore A4 will be positively correlated with wheel-
spinning. However the design of A4 is not the direct cause
of most students’ struggling where the true cause is the lack
of mastery on A2. Looking into the Shapley values, A4 is
chosen incorrectly as the highest valued feature for 11% of
all true positive wheel-spinning cases. This can inaccurately
lead to an assumption that A4 needs to be redesigned. While
redesiging A4 could indeed reduce the number of students
wheel-spinning on A4, if students master A2, they will not
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struggle more on A4 than they would on A5. Therefore sug-
gesting reviewing A2 instead of redesigning A4 as the most
likely intervention candidate would be desired as reviewing
A2 is often a much lower overhead intervention than re-
designing A4. Coming up with solutions for this issue would
be an interesting direction of future work.

7. CONCLUSIONS

In this work we propose a method to automatically suggest
interventions for wheel-spinning students. To our knowl-
edge this is one of the first investigations of both designing
a wheel-spinning model to suggest immediately actionable
interventions as well as using interpretable machine learn-
ing methods such as Shapley values in educational technol-
ogy. We evaluate our method’s ability to suggest useful in-
terventions by investigating the correctness of the suggested
intervention in two different simulations and through a qual-
itative investigation comparing the interventions suggested
by our method and the interventions prescribed by the ex-
pert. We found our method had high accuracy and was able
to choose an accurate intervention for more than 80% of the
time in the simulations before the students begin an activity.
Additionally in our real world setting our suggestions mostly
agreed with the expert prescription and the other cases were
due to limitations of the model and errors made in the in-
puts to the model. Our results suggest our method can help
inform interventions and improve educational systems to be
more effective and engaging.
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